
Tools and Technology Article

Estimating Black Bear Density Using
DNA Data From Hair Snares

BETH GARDNER,1 United States Geological Survey, Patuxent Wildlife Research Center, Laurel, MD 20708, USA

J. ANDREW ROYLE, United States Geological Survey, Patuxent Wildlife Research Center, Laurel, MD 20708, USA

MICHAEL T. WEGAN, Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA

RAYMOND E. RAINBOLT, Fish and Wildlife Management Program, United States Army, Fort Drum, NY 13602, USA

PAUL D. CURTIS, Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA

ABSTRACT DNA-based mark–recapture has become a methodological cornerstone of research focused on bear species. The objective of

such studies is often to estimate population size; however, doing so is frequently complicated by movement of individual bears. Movement

affects the probability of detection and the assumption of closure of the population required in most models. To mitigate the bias caused by

movement of individuals, population size and density estimates are often adjusted using ad hoc methods, including buffering the minimum

polygon of the trapping array. We used a hierarchical, spatial capture–recapture model that contains explicit components for the spatial-point

process that governs the distribution of individuals and their exposure to (via movement), and detection by, traps. We modeled detection

probability as a function of each individual’s distance to the trap and an indicator variable for previous capture to account for possible behavioral

responses. We applied our model to a 2006 hair-snare study of a black bear (Ursus americanus) population in northern New York, USA. Based

on the microsatellite marker analysis of collected hair samples, 47 individuals were identified. We estimated mean density at 0.20 bears/km2. A

positive estimate of the indicator variable suggests that bears are attracted to baited sites; therefore, including a trap-dependence covariate is

important when using bait to attract individuals. Bayesian analysis of the model was implemented in WinBUGS, and we provide the model

specification. The model can be applied to any spatially organized trapping array (hair snares, camera traps, mist nests, etc.) to estimate density

and can also account for heterogeneity and covariate information at the trap or individual level.

KEY WORDS abundance, Bayesian analysis, black bears, hair-snare trapping, hierarchical model, Markov chain Monte Carlo
(MCMC), spatial capture–recapture.

Many bear species worldwide are threatened with extinc-
tion. In 2009, 6 of the 8 bear species were on the
International Union for Conservation of Nature (IUCN)
Red List. At the same time, other bear populations are
increasing and expanding their ranges potentially creating
human–wildlife conflicts. One of the first steps in making
informed bear conservation and management decisions is
obtaining reliable population and density estimates (Mowat
and Strobeck 2000, IUCN 2007). There are a number of
techniques for sampling and tracking bear species, including
ear tags, colored bands, neck collars, and radiotransmitters.
Arguably, the most common method now used for
estimating bear population size is the application of mark–
recapture techniques to data from systematically collected
hair samples (Mowat and Strobeck 2000, Poole et al. 2001,
Boersen et al. 2003, Belant et al. 2005, Kendall et al. 2008).
Enough DNA is contained in the roots of mammalian hair
for the identification of species, sex, and individuality. This
is advantageous in studying bears because they are easily
attracted to hair traps using bait or scent lures; therefore,
samples can be collected more economically than with
traditional capture–recapture methods (Woods et al. 1999).

The traps are often constructed with barbed wire and bait
or an attractant and are simple to design and inexpensive
(Woods et al. 1999). Accordingly, the number of studies
using hair-snare traps for DNA-based mark–recapture
methods has grown in recent years, contributing to the
evolution of the techniques of Woods et al. (1999; see
Garshelis 2006 for a detailed review). Hair-snare studies

have been conducted on grizzly bear populations in British
Columbia, Canada (Mowat and Strobeck 2000, Poole et al.
2001, Romain-Bondi et al. 2004) and Glacier National
Park, USA (Boulanger et al. 2008, Kendall et al. 2008,
Kendall et al. 2009); on brown bears in France (Taberlet et
al. 1997) and Italy (Lorenzini et al. 2004); and on black
bears in the Canadian Rocky Mountains (Mowat et al.
2005), Louisiana, USA (Boersen et al. 2003, Triant et al.
2004), and Wisconsin, USA (Belant et al. 2005).

After microsatellite genotyping of hair samples from a trap
array, researchers can create individual encounter histories
for each bear that was captured at least once. Historically,
researchers have taken such data and applied capture–
recapture methods for estimating the size of a closed
population (Mowat and Strobeck 2000, Boulanger et al.
2004, Romain-Bondi et al. 2004, Boulanger et al. 2006,
Kendall et al. 2009). However, there are a number of
practical problems with this approach. One issue is that
bears move into and out of study areas, thus violating the
assumption of geographic closure (Boulanger et al. 2001,
Boulanger et al. 2004). Consequently, this causes ambiguity
and difficulty in defining a precise sample area.

Bears have large home ranges; therefore, movement of
individuals in the vicinity of trap locations can influence
estimates of detection probability and abundance (Efford
2004, Borchers and Efford 2008, Efford et al. 2008,
Gardner et al. 2009, Royle et al. 2009). Conceptually,
movement of individuals can be viewed as a form of
temporary emigration, and its effect is to lead to positive
bias in estimators of abundance (N; Kendall et al. 1997,
Kendall 1999, Boulanger et al. 2004). To address this1 E-mail: bgardner@usgs.gov
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problem, various adjustments to the nominal sample area
(i.e., the area within which traps were located) have been
suggested, such as buffering the trapping array (Dice 1938,
Karanth and Nichols 1998, Bales et al. 2005) to obtain an
estimate of the effective trap area or using independent data
from telemetry studies (White and Shenk 2001). Even in
studies with collared individuals, small sample sizes can still
cause problems and techniques, such as buffering the trap
array by half the mean maximum distance (Wilson and
Anderson 1985), can severely underestimate movement
(Rı́os-Uzeda and Gómez 2007).

In addition to ordinary encounter histories, data from
hair-snare arrays provide auxiliary information in the form
of spatial locations for each individual. The recent
development of unified capture–recapture models provide
a rigorous and integrated way of using individual capture
histories and trap coordinates to directly estimate density
without ad hoc determination of an effective trapping area
(Efford 2004; Borchers and Efford 2008; Royle and Young
2008; Gardner et al. 2009; Royle et al. 2009b). The
encounter history contains information about detection
probability, whereas the spatial coordinates of the trap at
which an individual was captured provides information
about the distribution of individuals in space (i.e., territories
or home ranges). This information can be used to estimate
absolute density in the presence of variable trap exposure
and heterogeneous detection.

We apply a spatially explicit, capture–recapture model to
data obtained from a black bear study in New York, USA,
collected from an array of hair-snare traps. Our model
describes trap-specific encounter frequencies as a function of
a latent variable (a random effect) interpreted as an
individual’s activity or home range center (Efford 2004,
Royle and Young 2008). The model can be formulated as a
Generalized Linear Mixed model (Royle et al. 2009a, Royle
and Gardner 2010), where the random effect is a function of
the individual activity center. We then specify a distribution
for the latent activity centers and apply standard inference
methods for the analysis of the resulting hierarchical model.
We provide a Bayesian analysis of the model using Markov
chain Monte Carlo (MCMC) methods in WinBUGS (Gilks
et al. 1994) using data augmentation (Royle et al. 2007).

We assume a model in which individuals may be captured
at most one time per trap during each occasion, but in an
arbitrary number of traps. This is typical of hair-snare
studies in which separate visits by individuals to the same
trap cannot be discerned. In a previous analysis, Gardner et
al. (2009) used a multinomial observation model, which
assumes that each individual can be captured in only a single
trap during any sampling occasion; we compare the results
obtained under the 2 models here. We also extend the
Gardner et al. (2009) model by including the sex of
individuals in the detection function and an indicator of
previous detection covariates to account for a behavioral
response after the bear is first captured. We used baited
traps, which may cause bears to be more likely to visit traps
and thus their detection rate may change after the first
capture. In contrast, in studies that use only an attractant,

bears may learn that the attractant does not result in a food
reward, which may lead to bears not bothering to visit sites,
which would also directly affect their detection rate after the
first capture.

STUDY AREA

The data we used were collected from a black bear
population at the Fort Drum Military Installation, located
in northern New York, USA (Fig. 1). Fort Drum is part of
the northern black bear range in New York State (New York
State Department of Environmental Conservation Bureau
of Wildlife–Black Bear Management Team 2007).

METHODS

Data Collection
To collect hair samples, we established and baited 38
barbed-wire traps (Fig. 1). Each trap was checked weekly
for 8 weeks during June–July 2006. Traps were located
approximately 3 km from one another and were baited again
weekly (for details, see Wegan 2008). Based on the
Universal Transverse Mercator (UTM) coordinates for each
trap, the area of the minimum convex polygon for the
trapping array was 157.1 km2. For modeling, we rescaled
the UTM coordinates to kilometers by division of 1,000.
We packaged hair samples into envelopes and labeled them
for DNA testing, which was conducted by Wildlife
Genetics International (Nelson, BC, Canada) using micro-
satellite genotyping. Each usable hair sample was analyzed
at 6 microsatellite loci—G10L, G1D, G10P, G10M, G10J,
and MU59. Heterozygosity of the 6 markers used was 0.80,
which indicates a low probability of improperly matching 2
samples from individuals with differing genotypes (Paetkau

Figure 1. Study region and trap locations (n 5 38) shaded according to
the number of encounters that occurred at each trap; the darker the trap
location, the greater the number of encounters. Data were collected in
summer of 2006 on black bears on Fort Drum, New York, USA, as shown
on the inset map. Coordinates are in Universal Transverse Mercator
(UTM) Zone 18.
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2003). Genotyping errors were reduced in the laboratory by
using a multiphase procedure that included setting mini-
mum selection standards for each hair sample, eliminating
samples that failed to produce 3 of the 6 loci, examining the
data set for matching genotypes displaying patterns typically
produced by genotyping errors, and reanalyzing those with
suspected amplification problems (D. Paetkau, Wildlife
Genetics International, personal communication). Geno-
typing error should always be considered when doing
individual-based analyses (e.g., mark–recapture modeling),
and precautions should be taken to reduce the error.

Model Formulation
We suppose that sampling occurred at J traps, having
coordinates {xj 5 (x1j, x2j); j 5 1, 2 … , J}. The observa-
tions generated from hair-snare studies were the encounter
histories yijk, for individual i 5 1, 2, … , n, trap j 5

1, 2, …, J, and sample interval (occasion) k 5 1, 2, … , K.
We suppose that an individual could be captured at most
one time in a trap during any particular interval but may
have been captured in any number of traps. This is typical in
hair-snare studies because separate visits by the same
individual to a single trap cannot be uniquely identified
during the sampling interval. Thus, yijk 5 1, if an individual
was encountered in trap j during sampling occasion k, and
yijk 5 0 otherwise.

A key feature of our model is that trap-specific encounter
probabilities [Pr (yijk 5 1) 5 pij], which we describe below,
depend on the distance between a trap and an individual’s
activity center (Efford 2004, Borchers and Efford 2008), a
geographic coordinate, denoted by si. We cannot observe the
location of these activity centers, and so they are regarded as
latent variables (or, equivalently, random effects) and are
treated similarly to classical individual covariate models
(e.g., Royle 2009).

Let si 5 (s1i, s2i) denote the activity center for individual i
5 1, 2, … , N, where N is the population size of individuals
exposed to sampling by the hair-snare array. We assumed
the population of N activity centers, si; i 5 1, 2, … , N,
were distributed uniformly throughout some region, S, and
did not change throughout the study. We denote this as

si*Uniform Sð Þ:

This uniformity assumption is the basis of all current
spatial capture–recapture models that view individual
activity centers as the realization of a spatial point process
(e.g., Efford 2004, Borchers and Efford 2008, Royle and
Young 2008) having state-space S. The region S through-
out which individual activity centers are distributed will be
prescribed for any particular configuration of traps (e.g., by
specifying the coordinates for a polygon that contains the
entire trapping array). Although the population size
parameter N is sensitive to the size and extent of S, the
density of points is invariant to S as long as S is sufficiently
large and detection probability is decreasing in distance as
described below.

We defined the trap-specific encounter probabilities
conditional on si and the trap locations according to

Pr yijk~1
� �

~1{ exp {l0gij

� �
where gij ; g(si, xj) is some function of the distance between
individual activity center si and trap xj. This formulation of
the encounter probabilities can be motivated as the
probability of

L

1 encounter under a model where individual
encounter frequencies (unobservable with hair-snares) are
Poisson (Royle et al. 2009a, Royle and Gardner 2010). The
parameter l0 is a baseline encounter rate, which is the
expected number of captures in a trap given that an
individual’s activity center is located precisely at that trap.

To include a behavioral response covariate (i.e., an indicator
of previous detection) and the sex of the individuals, we
describe l0 as a function of covariates such that

log l0;ik

� �
~l0zaINDikzbSexi

where IND is a binary n 3 k matrix with INDik 5 1, if
individual i was captured previously to sample occasion k, and
zero otherwise. Sex is a binary vector indicating whether an
individual is male or female, and l0 remained the baseline
encounter rate for individuals not previously captured in the
study. An interesting element of this model is that Sex is an
individual covariate that was missing for the unobserved
individuals, and thus, was estimated within the model (see
Royle 2009). We then described the trap-specific encounter
probabilities as a function of l0,ik, such that

Pr yijk~1
� �

~1{ exp {l0;ikgij

� �
:

We defined gij according to

gij~ exp
{d 2

ij

s2

 !

wheres2 controls the effect of distance between an individual’s
activity center and trap location on encounter probabilities,
and dij 5 Isi 2 xjI is the Euclidean distance between the
activity center of individual i and trap j. To incorporate a
potential difference between males and females, we indexeds2

by sex of the individual and estimateds2 for males and females.
This function is similar to a half-normal detection function
widely used in distance sampling (Buckland et al. 2001) and
other spatial capture–recapture applications (Efford 2004,
Borchers and Efford 2008).

Model Extensions
Moving trap locations (sites) after each sampling occasion is
advantageous for many reasons, including capturing and
recapturing more bears (Boulanger et al. 2006). Similarly,
rotating traps is a standard design used in camera trapping
(Karanth and Nichols 2002, Royle et al. 2009a). For studies
in which traps were moved after each sampling period, we
constrain the encounter probability to be zero for periods
during which the trap was inoperative. Let mjk be a binary
indicator of whether trap j was operational during occasion
k. Then, the encounter probability is

Pr yijk~1
� �

~1{ exp {l0;ikmjkgij

� �
where mjk 5 1 if trap j was operational during trapping
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occasion k, and mjk 5 0 otherwise. Thus, whenever a trap
was not operational, Pr(yijk 5 1) 5 0, as it should be.

For studies where the trap locations were moved, we
considered each possible trap location as a trap in the
analysis. For example, if one physical trap was relocated 10
times during a study, that trap would appear as 10 traps in
the analysis (i.e., once for each relocation). Following the
model setup, we considered the trap to be operational at the
location where it was set up, and we considered it to be
turned off (i.e., inoperational) at the other 9 locations for
that time period.

Based on the model formulation, adding covariates into
the observation model is straightforward, similar to how the
indicator of previous detection covariate was incorporated
into the model. Covariates can be specific to traps,
individuals, or time (i.e., sampling occasion). For example,
if some traps were baited and others were not, we might
expect a difference in the detection between trap types, thus
we could add this into the observation model by including a
term for baited traps as

l0j~a0za1baitedj

where baitedj indicates whether trap j was baited or not. The
model is flexible enough that we can account for variation
from trap-dependence to individual heterogeneity, the latter
of which can be dealt with by introducing an additional
individual latent effect.

Bayesian Analysis and Implementation
The model was described conditional on the individual
activity centers, si 5 (s1i, s2i), which were unobserved and,
thus, unknown; hence, their coordinates can be viewed as
random effects, and the model could be analyzed by
integrated likelihood, as in classical random effects models
(see Borchers and Efford 2008 and Efford et al. 2008). We
adopted a Bayesian analysis of the model based on MCMC
sampling from the posterior distribution.

In addition the population size, N, of activity centers for
the state-space S is also unknown. To deal with this, we
used a technique known as data augmentation, which yields
a tractable Bayesian implementation of capture–recapture
models with an unknown N and is also easily implemented
in WinBUGS (Royle et al. 2007). This technique has been
used recently in a number of spatial-capture–recapture
articles (Gardner et al. 2009; Royle 2009; Royle et al. 2009a,
b). In data augmentation, we set a uniform [0, M] prior
number on N, which can be shown to justify adding a large
number (M 2 n) of encounter histories consisting of all
zeroes (i.e., augmentation) to the data set and then
analyzing the augmented data as simple zero-inflated
logistic regression type model with a zero-inflation param-
eter 1 2 y (Royle et al. 2007). The model is a formal
reparameterization, in which the parameter N is replaced by
the parameter y. Data augmentation can be motivated by
the similarity between closed population models and models
of site occupancy (MacKenzie et al. 2002) as noted in Royle
et al. (2007). To carry out the analysis, we must set M to be
a sufficiently large upper bound for N. In practice, this

means setting M to be much larger than the expected
population size for the region, but not too large, because a
larger M incurs a greater computational cost. We deduced
whether or not M was sufficiently large by inspecting the
posterior distribution of N, which should be concentrated
away from the boundary N 5 M. In our application, we
added 103 all-zero histories, and thus, M 5 150.

We chose conventional uninformative prior distributions
for all parameters to reflect our desire for inference that was
based on the observed data alone rather than any existing
prior knowledge. We reported s in kilometers based on the
scaled coordinate system, and we chose a uniform
distribution on [0, 15]. For l0, a, and b, we used a uniform
distribution on [210, 10]. We fit the model in WinBUGS
(Gilks et al. 1994; see Appendix for the model specifica-
tion). To compute the posterior summaries for the
parameters, we ran the MCMC algorithm for 25,000
iterations, discarded the first 10,000, and computed the
results from the remaining 15,000 iterations. We checked
for convergence by evaluating the R̂ statistic, such that all
parameters were ,1.1 (Gelman and Hill 2006).

RESULTS

The results of the DNA tests indicated that 47 individual
bears visited the traps 151 times during the 8-week survey.
We provide posterior summaries for each model parameter
(Table 1). During the 8-week study, encounters at each trap
varied from 0 to 17 (Fig. 1). A number of exterior traps
appeared to have fewer captures than those in the interior of
the study area. The posterior mean estimated number of
activity centers (N) for the area of S was 113.6. We
estimated density (D) as the number of bears/km2 at 0.20
with a 95% posterior interval of (0.15, 0.26). Despite the
uniformity assumption imposed on the prior distribution for
the activity centers, the posterior densities of activity centers
for captured and uncaptured individuals (Fig. 2) indicate
spatial heterogeneity in bear density.

We used the discrete, uniform prior number for N, with an
upper bound of M 5 150, which was about 100 larger than
the observed number of individuals (47). We deduced that
M 5 150 was a sufficiently large upper bound for the
uniform prior number on N because the posterior distribu-
tion of N was concentrated well below the value assigned to
M. For l0, the posterior mean estimate was 22.27, and for
b, the posterior mean estimate was 20.29. However, b was
not statistically different from zero, indicating that there was
no difference in the detection of males versus females. For a,
the posterior mean estimate was 1.04. We converted that
into the detection probability for an individual whose
activity center was located precisely at a trapping location
(i.e., gij 5 1), using the formula Pr(yijk 5 1) 5 1 2

exp(2l0,ik), which equals 0.10 for individuals not previously
captured and 0.25 after an individual’s first capture. Thus,
after a bear was captured, we were more likely to detect that
bear again. The estimated posterior means for s were 3.24
and 2.15 for males and females, respectively. The parameter
s is related to the shape of the curve defining the weights, g.
We translated our estimated s into a 95% home range

Gardner et al. N DNA Capture–Recapture Models 321



radius by assuming a bivariate, normal model for movement.
We estimated mean home range radii of 5.61 km and
3.71 km for males and females, respectively.

Gardner et al. (2009) provided estimates of N under a
classical closed-population model with homogeneous detec-
tion probabilities (termed model M0; Otis et al. 1978) and
with heterogeneous detection probabilities using a logit-
normal model (model Mh; Coull and Agresti 1999, Pledger
2000, Dorazio and Royle 2003), which are 2 standard
models used in hair-snare studies. The estimates of N were
49.2 under the model M0 and 104.1 under the logit-normal
model Mh. N, as estimated under these 2 models, has a
different definition than the spatially explicit models (i.e., N

in our model applies to an explicit spatial region that is fixed
and known), and thus, direct comparisons are not useful. It
is more constructive to compare the estimated density. By
buffering the minimum convex hull of the trap array by the
radius of the mean female home range size to estimate the
effective trapping area (Bales et al. 2005), we translated
these estimates of N into a density using the more ad hoc
method of many earlier studies. The mean female home
range radius was estimated for our study region as 2.19 km
(Wegan 2008), and the effective trapping area with this
technique was 255.30 km. Hence, the estimated densities
are 0.19 and 0.41 bears/km2 for models M0 and Mh,
respectively.

DISCUSSION

A fundamental objective of many population studies,
including this one, is estimation of the size or density of a
population. Applying mark–recapture techniques to DNA-
based, individual detection data derived from hair samples is
one of the most common methods currently used for
estimation of population size for bear species, and the

technique is likely to increase in the future. A number of
spatial capture–recapture models and methods have been
developed since the initial conceptual formulation described
by Efford (2004). Royle and Young (2008) describe a
hierarchical model that includes a spatial model for the
distribution of individual activity centers and an explicit
model governing the movement of individuals about their
activity center. They apply their model to surveys of lizards
that involve repeated sampling of an areal sample unit, so
locations of individuals are recorded in continuous space,
subject to the truncation of space induced by the sample
unit. Borchers and Efford (2008) formalize inference under
a model that is relevant to certain types of trap arrays (i.e.,
multicatch systems, such as arrays of mist-nets). Their
analysis is based on integrated likelihood, under which, the
conditional-on-s likelihood is integrated over the random
effects distribution for s. As we have done here, they also
adopt a uniformity assumption on s.

Gardner et al. (2009) and Royle et al. (2009a) consider a
Bayesian framework for inference under a hierarchical
formulation of that model. In particular, Gardner et al.
(2009) applied a multinomial observation model to the bear
data considered in this article and estimated a density of
0.16 bears/km2. One deficiency of that analysis is that the
multinomial model is a technical misspecification for the
type of data generally collected in hair-snare traps. The
model assumes that an individual can only be captured in
one trap in a given sample occasion; however, because hair-
snare traps do not physically trap the individual, multiple
traps can be visited during any sampling occasion. In making
the assumption that individuals could only be captured in
one trap per sample occasion, Gardner et al. (2009) were
unable to make use of all of the data collected on each
individual, which resulted in a smaller estimate of N. In the
data set, one individual was captured at 5 different traps
within one sample occasion, and overall, 12 individuals were
captured multiple times during at least one sample occasion.
The Gardner et al. (2009) model also did not include the
behavioral response covariate, which affected the detection

Figure 2. Map of the posterior density of activity centers, specifically,
E[N(b)|data], where N(b) is the estimated number of activity centers
located in pixel b. The grey polygon is the convex hull around the trap array,
and the map is displayed in Universal Transverse Mercator (UTM) Zone 18
North coordinates. These results are based on a study of black bears
conducted in northern New York, USA, during the summer of 2006.

Table 1. Posterior summaries of model parameters for a black bear study
in northern New York, USA, where 47 unique individuals were observed
during 8 sample occasions in the summer of 2006. We define N as the
number of estimated activity centers in the region S, and calculate density
(D) as the number of bears/km2; a is the parameter associated with the
behavioral-response covariate, b is the parameter associated with female
detectability, and exp(l0) is the baseline detectability for an individual who
has not been previously captured and whose activity center is located
precisely at a trap. We define s as the shape parameter related to the
distance function, separated by males and females, and y as the inclusion
parameter for the augmented data set.

Parameter x̄ SD 2.5% Median 97.5%

D 0.20 0.03 0.15 0.20 0.26
sF 2.15 0.19 1.80 2.13 2.55
sM 3.24 0.28 2.74 3.21 3.77
l0 22.27 0.29 22.84 22.26 21.69
a 1.04 0.24 0.58 1.04 1.50
b 20.29 0.28 20.83 20.29 0.26
y 0.75 0.11 0.55 0.75 0.96
N 113.62 15.30 86.00 113.00 144.00
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probabilities, and thus, the estimated N and the model did
not include sex, which appears to greatly influence home
range size.

Under our model, we estimated density to be 0.20 bears/
km2, whereas we estimated density to be D0 5 0.19 bears/
km2 under model M0 and Dh 5 0.41 bears/km2 under
model Mh. The density estimates from model M0 are similar
to our current estimates, but the model Mh is greater than
that determined from our spatial capture–recapture model.
Interestingly, we estimated Nh 5 104.10 under model Mh,
which was much closer to the estimated N 5 113.00 under
our spatially explicit model. This discrepancy is the result of
the difference in the definition of N and the estimation of
the effective trapping area under traditional approaches. A
flaw with the traditional approaches, and hence with this
comparison, is that there is no formal, objective basis for
converting estimates of N under traditional closed-popula-
tion models to density. The choice of buffers is completely
subjective and lacking a formal method for estimation or
assessing adequacy, and the models themselves (e.g., model
Mh) are purely phenomenological. In contrast, space in our
model is fixed and known, and the underlying mechanism
that induces heterogeneity (i.e., spatial location of individ-
uals relative to traps) is directly related to the biological
context of the problem.

Our analysis indicated that bears are more likely to be
detected after having been previously detected. This is
probably a result of the traps being baited and individuals
then seeking out the bait. The detection probability of
individuals that were never seen during our study is smaller
than in Gardner et al. (2009). In particular, the smaller
detection probability for uncaptured individuals then
resulted in a higher estimate of bears in the study region.
Because we found a strong behavioral response for bears
after their first capture, it is possible that the activity
patterns of individuals that have been captured may be
altered because of the incentive for food. It is not entirely
clear whether this change in activity patterns (i.e., behavior)
influences only detectability or whether it also affects the
activity center. One possible extension to the model is to
allow activity centers to change in a Markovian fashion,
which can be done with sufficient data or in multiyear
studies.

Additionally, based on the formulation of the model,
which allows for individual heterogeneity in the detection
probability, we could easily include other covariates that we
might expect to influence either the detection probability or
the scaling parameter, s. We expected individual capture
rates would likely vary by age or sex classes for bear species
(Woods et al. 1999, Noyce et al. 2001). We found detection
probability was not statistically different between males and
females; however, there was significant difference in s,
which showed that male bears effectively have a larger home
range. The extension of our model to include sex as a
covariate in both the detection probability and s is a clear
example of the ease of implementation using our approach.

Our hierarchical model can also accommodate moving
traps (Royle et al. 2009a, b) and inclusion of other

covariates. Boulanger et al. (2006) suggest that moving trap
locations after each sampling occasion is advantageous for
increasing the number of captures and recaptures. This is
becoming a more common practice in hair-snare studies
(Kendall et al. 2008, Kendall et al. 2009) and camera
trapping studies (Karanth and Nichols 2002, Karanth et al.
2004). It is not fully clear how moving the trap locations
would influence the current nonspatially explicit techniques
because the trap array polygon is altered at each sampling
occasion when traps are moved. However, in a formal
model-based framework, such as ours with the simple
extension for including traps that are relocated, we can
account for the variations in trap array geometry.

Our model, as well as many of the spatially explicit,
capture–recapture models, relies on the assumption of a
‘‘circular’’ detection function, which may be interpreted as
implying a circular-shaped home range for individuals
(Borchers and Efford 2008, Efford et al. 2008, Royle and
Young 2008, Gardner et al. 2009), although this has not
been established. Although circular home ranges are not
realistic (Smith 1983, Samuel and Garton 1985), that does
not imply that a circular detection function is inadequate or
even unrealistic. However, it is necessary to provide explicit
assumptions about activity centers and individual detection
probability for the population of all individuals (encountered
or not) so that inference can be made about the entire
population. Although the simplistic assumptions that
underlie our model may not necessarily be realistic, our
model provides an improvement over models that ignore
space and movement, and the hierarchical formulation of
our model allows us to easily change the functional form of
the assumption and potentially evaluate it formally, given
sufficient data.

MANAGEMENT IMPLICATIONS

With many bear species in threatened and endangered
status, it is ever more important to develop the tools and
statistical methods to properly analyze the collected data.
Management issues range from decisions about population
viability and habitat preservation to harvest regulations
(Garshelis and Noyce 2006). For most of these issues, one of
the first steps in making informed conservation and manage-
ment strategies is determining reliable population and density
estimates. The model we presented makes use of the spatial
information that is inherently collected in studies that use
trapping arrays. We use this spatial information to estimate
movement and detection of individuals in a way that provides
more accurate estimates of population size and density. It is
important to explicitly include information, such as the sex of
the individual or baited traps, in the model because
detectability directly affects estimates of population size. In
the realm of conservation and management related to
populations, accurate estimates of density in conjunction with
the uncertainty associated with those estimates, is crucial.
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Appendix. The WinBUGS model specification for the spatial capture–recapture model with the behavioral response (trap happiness or trap shyness) to

capture, and Sex as covariate in detection and s. Although this model was developed for a black bear study that occurred in northern New York, USA, during

the summer of 2006, the specification is not specific to that study.

model {

sigma[1],dunif(0, 15) #prior specification for sigma for females

sigma[2],dunif(0, 15) #prior specification for sigma for males

loglam0,dunif(210,10) #prior specification for log(lambda)

alpha,dunif(210,10) #prior specification for alpha

beta,dunif(210,10) #prior specification for alpha

psi,dunif(0, 1) #prior specification for psi

tau,dunif(0,1) #prior specification for tau

for (i in 1:M){

z[i],dbern(psi)

SEX[i],dbern(tau)

SEX2[i] ,- SEX[i] + 1

SX[i],dunif(xlower, xupper) #sets the prior on the X and Y- coordinates as uniform

SY[i],dunif(ylower, yupper) #over the given range

for(j in 1:ntraps) {

D2[i,j] ,- pow(SX[i]-trapmat[j,1], 2) + pow(SY[i]-trapmat[j,2],2)

#D2 is the distance between an activity center at (SX,SY)

# and the trap j (trapmat is a matrix of x,y coordinates for

# each trap)

for(k in 1:K){

log(lam0[i,j,k]),- loglam0 + alpha*IND[i,k] + beta*SEX[i]

# calculate lam[i,j,k] with the behavioral response covariate (IND) and

# with a difference based on SEX of the individual

LamG[i,j,k] ,- lam0[i,j,k]*exp(-D2[i,j]/sigma[SEX2[i]])

# use the distance function with sigma specified by SEX of the individual

# and the detection probability to calculate the trap specific encounter

# probabilities

pmean[i,j,k],21-(exp(-LamG[i,j,k]))

tmp[i,j,k],-pmean[i,j,k]*z[i]

y[i,j,k],dbin(tmp[i,j,k],1)

}

}

}

N,-sum(z[1:M]) #calculate the abundance

D,-N/((xupper-xlower)*(yupper-ylower)) #calculate the density

}
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